品牌中測
分類房屋檢測
數量100000000
種類可靠性鑒定
功能房屋檢測單位
是目前市面上應用于工業的有效快捷和必不可少的工具,在高速發展的科技社會,為了效率的提高,在租賃廠房、辦公室、酒店場所包括火災檢測等都需要應用到的鋼結構檢測。那么鋼結構檢測有哪些注意事項呢?
(1)要監督委托有相應資質的檢測機構進行,國內的鋼結構檢測都無外乎包含有安全、質量和環境管理體系,并且有高新技術的檢測如:能簡便利用光、磁、聲和電等物理特性,在既不損害和影響被檢測對象的性能的前提下,便能判斷出檢測對象的剩余壽命和缺陷的無損檢測,此外更包含其他高新技術射線檢測、超聲波檢測、磁粉檢測等。
(2)對于取樣、送檢等制度要及時改善,要避免試件與工程不一致現象:如噴漆不均勻、焊接不規范等。鋼結構檢測工程實施前,應有該鋼結構檢測施工單位技術負責人審批過的施工組織設計、與其相符的專項施工方案等技術文件,并按有關規定報送或代表;如發現問題應提前組織評審重要鋼結構檢測工程的施工技術方案和安全應急預案,此外,對于鋼結構工程施工及質量,應使用計量工具驗收。各個施工單位和監理單位必須統一計量并標準化。
(3)施工質量的要求要符合現行國家標準《鋼結構工程施工質量驗收規范》的有關規定。在工程中,若有部分檢測項目,難以找到具有其資質和的鋼結構檢測機構,且花費成本高昂,在這種情況下,必須堅持原則,堅定信念,督促承包的工作單位,特別是鋼結構構件質量方面,要避免部分商家偷工減料而導致出現意外事故。保證鋼結構制作與安裝質量及施工進度有效進行,同時這也是國家現行鋼結構工程施工質量驗收規范規定的“主控項目”。
綜合以上注意事項,單位進行鋼結構檢測便有了很清晰的思路,毋庸置疑,安全和質量是要考慮因素,此外高新技術的引進將大大提高工作效率,選擇鋼結構檢測,為工作提供更多的方便和快捷。
光伏發電技術在建筑中的主要應用為在既有建筑平屋頂上安裝光伏電池板及相關配套設施組成的發電系統,屋面板往往不能承受由安裝光伏電池板引起的新增屋面荷載,需對屋面板、甚至屋面梁進行加固處理。本實用新型提供了一種用于支承光伏電池板的非屋面承重結構,包括混凝土基座,其特征在于所述的混凝土基座上架設光伏電池板承重架組件,該光伏電池板承重架組件包括多條承重鋼梁、多條槽型鋼軌和多個光伏電池板支架,所述承重鋼梁的底部固定在混凝土基座上,槽型鋼軌的端部焊接在承重鋼梁上,光伏電池板支架安裝在槽型鋼軌上。本實用新型使新增屋面荷載全部由原框架柱頂承受,避免了由于屋面板超載而進行屋面板、屋面梁的加固處理。鋼結構是主要由鋼制材料組成的結構,是主要的建筑結構類型之一。鋼結構主要是由型鋼和鋼板等材料制成的鋼梁、鋼柱等構件組成,各構件間通過焊接、螺栓、柳釘連接。鋼結構施工簡單、自重輕、整體剛性好、變形能力強,能夠很好的承受動力荷載,具有良好的抗震性能。鋼結構不僅可靠性較高,彈性模量也高,且可利用機械化設備進行大規模量產。公司擁有高水平的技術人才、設計團隊,及經驗豐富的管理機構與施工隊伍可確保每一個項目的完成都能達到客戶滿意。從房屋加固的方案設計到施工,每一步都為客戶量身定做,采用以項目計費的計費方式,建造出讓客戶滿意的位,高質量的房屋加固。以鋼結構廠房為例:
1、鋼結構材質檢查是很重要的,
構成鋼結構的桿件、節點板、鉚釘、螺栓、焊接材料等,一般從外觀上很難分辨清楚,由于材質不同,其機械性能(強度、屈服強度、延伸率、冷彎性能、沖擊韌性等)和化學成份(C、Si、Mn、P、S……)不同。對結構可靠性(安全性、耐久性)、以及施工中的可焊性、低溫工作條件下的冷脆性等。其影響都是很大的,所以要求在結構驗算時其材料的強度取值,當結構材料種類和性能符合原設計要求時,且原始資料充分可靠,應按原設計取值。不相符時,或材料已變質時,應采用實測試驗數據,此時材料強度的標準值應按《建筑結構設計統一標準》(G68—84)第4.0.4條規定確定。
鋼結構設計規定,當構件表面溫度超過℃時,就要采取隔熱措施,當構件溫度大于或等于200℃時,就要按構件所處工作溫度條件用試驗方法確定材料的物理力學指標。
2、變形
結構構件在設計荷載作用下的變形值的限制,主要是從為了滿足使用功能的要求,包括:
(1)用戶的安全感和美觀;
(2)不損壞非結構構件;
(3)不超過結構能承受的變形;
(4)不使用途失效;
(5)不得有過度的振動和搖晃。
鋼結構構件變形按表11.3評定等級標準。
3、評定等級分為A、B、C、D,按承載能力(包括構造和連接)、變形、偏差三個子項評定等級,并以承載能力(包括構造和連接)為主確定該項目的評定等級:
(1)當變形、偏差比承載能力(包括構造和連接)相差不大于一級時,以承載能力
(包括構造和連接)的等級作為該項目的評定等級;
(2)當變形,偏差比承載能力(包括構造和連接)低二級時,按承載能力(包括構
造和連接)的等級降低一級作為該項目的評定等級;
(3)遇到其他情況時,可根據上述原則綜合判斷、評定等級。
光伏電站的建設需要占據較大的土地面積,針對這一特點,需要選擇土地遼闊、人口稀少以及太陽能資源豐富的地區,從我國目前已經開始建設的光伏電站來看,主要分布在我國西部地區。光伏電站的應用特點如下:
(1)由于西部地區煤礦資源豐富而且城市耗電量相對較低,光伏電站生產的電能無法就近使用,需要通過變電站升壓并通過高壓電纜進行遠距離傳輸,其中存在較大的運輸損耗;
(2)地價、額外的土地建設費用以及電站管理費用成為了光伏電站建設的附加成本,其可以達到光伏電站總建設成本的10%~20%左右;
(3)由于太陽能資源缺乏連續性,光伏電站直接并網之后,不但無法成為大型電網的備用電源,同時其發電的隨機性還會加大電網對電力調配的難度。
而從我國的情況來看,在沙漠地區,光伏電站具有較好的應用價值,沙漠地區的土地利用家就只較低,而且面積廣闊,其太陽能資源相對較為豐富,加上我國沙漠面積較大,未來在沙漠地區建設光伏電站將成為主要的趨勢之一。

某公司廠區1#廠房位于三明市尤溪縣洋中鎮,建于2011年,車間平面尺寸為50x25米,檐口高度為8.0米,總屋頂面積為1250m2,主車間結構形式為門式剛架結構。甲方擬在車間屋面上鋪設太陽能電池板及附件設備,根據甲方提供的資料,鋪設太陽能電池板及附件設備的總重量不超過15kg/㎡(0.15kN/㎡)。根據甲方提供的技術資料和三明共聚塑膠有限公司洋中廠區1#廠房圖紙,對屋面增加太陽能設備進行安全評估,根據安全評估結果提出對車間結構的處理意見及建議,以確保建筑物的安全和合理使用。 安全性評估的主要依據:
1、《建筑結構設計統一標準》(G68-84)
2、《建筑結構可靠度設計統一標準》(G068-2001)
3、《工程結構可靠度設計統一標準》(G153-2008)
4、《工業建筑可靠性標準》(G144-2008)
5、《建筑結構荷載規范》(G009-2012)
6、《建筑抗震設計規范》(G011-2010)
7、《建筑抗震標準》(G023-2009)
8、《鋼結構設計規范》(G017-2003)
9、《冷彎薄壁型鋼結構技術規范》(G018-2002)
10、《門式鋼架輕型房屋鋼結構設計規程》(CE 102:2012)
11、《建筑地基基礎設計規范》(G007-2011)
12、《既有建筑地基基礎加固技術規范》(JGJ123-2000)
13、《民用建筑修繕工程查勘與設計流程》(JGJG117-98)
14、《建筑結構檢測技術標準》(GB/T50344-2004)
15、《危險房屋標準》(JGJ 125-99)
16、《鋼結構加固技術規程》(CE 77-96)
17、原工程相關資料:包括工程設計圖紙、設計變更、施工記錄
18、建筑物結構現狀調查結果和甲方提供的太陽能設備資料。 鋼結構廠房屋面光伏承重安全檢測報告中心,繼工業能耗、交通能耗之后,建筑物能耗也成為了我國能耗大戶之一。但在目前我國現有建筑物中只有4%采取了節能措施,我國建筑物單位面積的能耗是發達的3倍以上。如果對此不采取強效有力的政策措施,那么再過10年我國建筑能耗將會是現在的3倍以上。
二、屋面光伏荷載報告——屋頂分布式光伏電站跟地面電站選址有較大的差異
其主要和建筑物高度、屋頂可用面積、屋頂類型、承載力和使用年限相關。
建筑物的高度
屋頂光伏電站所處的建筑物高度不宜過高。主要原因,其一,光伏組件單體面積大,越高風荷載越大;其二,樓層過高,施工難度大,二次搬運費用高;其三,由于光伏電站的日常維護需要進行檢修、清洗、更換設備等工作,樓層過高相對運行維護費用高。所以,對于建筑建設分布式光伏電站要慎重。
屋頂分布式光伏電站選址需要考慮哪些因素?
屋頂的可利用面積
屋頂可利用面積直接關系到光伏電站建設容量,從目前光伏電站建設來看,光伏電站建設的容量要具有一定的規模性,過小容量的光伏電站當前還不具備商業投資(隨著對分布式光伏電站的推廣及業務的發展,屋頂、戶用光伏電站越來越受到人們的關注)。所以對于較小的可利用面積屋頂不宜建設。屋頂可利用面積主要由屋頂的女兒墻高度、屋頂構筑物、設備等因素相關。對于女兒墻過高,周邊有較多、較、空調、太陽能熱水器的屋頂相對可利用面積較少,不宜安裝光伏電站。
屋頂的類型與承載力
常見屋頂類型混凝土和彩鋼瓦類型,對于不同類型屋頂的光伏電站的技術方案也不同。屋頂的恒荷載和活荷載。恒荷載主要指屋頂結構自重及固定附屬構造層的重量;活荷載是指可的負載重量,如家具、擺設、人員等。另外,對混凝土屋頂需要考慮防水措施,對彩鋼瓦屋頂要考慮瓦型朝向、瓦型結構、瓦型耐壓能力等因素,瓦型朝向選用南北方向。
建筑物的產權光伏電站投資者的屋頂使用成本一般體現為兩種方式:一種是以租用屋頂的方式,每年付給產權人一定的租金;一種是合同能源管理模式,給電量消費者一個較低的電費,如現有電費的90%。其中,合同能源管理模式應用比較廣泛。使用者如果擁有建筑物的擁有產權,則談判相對簡單;若使用者只是承租人,并不擁有產權,是未來光伏電量的消費者。這種情況,就需要分別跟產權人和消費者分別進行協商,談判成本和收益分享計劃就相對較復雜。
建筑物的用途
從建筑物的用途角度可以分析該建筑物用電負荷特性、用電收益、站區可利用面積等因素,是分布式光伏電站建設主要考慮因素之一。一般屋頂的來源主要有:住宅、廠房、商業建筑、行政辦公樓、學校等。

屋面光伏荷載報告——根據結構不同,工業建筑屋頂大致分為混凝土屋面、鋼結構屋面(根據彩鋼瓦類型大致又可分為角馳型、直立鎖邊型、波浪型等類別)。
分布式光伏屋面類型不同,可采用的安裝方式也不同。分布式光伏系統安裝前,首先必須考慮房屋結構的安全性,必須根據現行的建筑結構荷載規范要求,結合現場實際情況,委托機構,對房屋進行結構承載力復核驗算,特別是鋼結構房屋的結構承載力驗算,如有不滿足規范要求的,必須對房屋加固處理,才能保證房屋安全可靠。
鋼結構的檢測可分為鋼結構材料性能、連接、構件的尺寸與偏差、變形與損傷、構造以及涂裝等項工作。檢測時可根據委托方的要求、結構實際情況或工程特點確定重點內容。
1、材料性能
對結構構件鋼材的力學性能檢驗可分為屈服點、抗拉強度、伸長率、冷彎和沖擊功等項目。
當工程尚有與結構同批的鋼材時,可以將其加工成試件,進行鋼材力學性能檢驗;當工程沒有與結構同批的鋼材時,可在構件上截取試樣,但應確保結構構件的安全。
鋼材化學成分的分析,可根據需要進行全成分分析或主要成分分析。
2、連接
鋼結構的連接質量與性能的檢測可分為焊接連接、焊釘(栓釘)連接、螺栓連接、螺栓連接等項目。
焊接焊縫可采用超聲波探傷的方法檢測;
度大六角頭螺栓連接副的材料性能和扭矩系數;
扭剪型度螺栓連接副的材料性能和預拉力的檢驗。
3、尺寸與偏差
鋼結構構件的尺寸與偏差可采用卷尺與游標卡尺進行測量。
4、缺陷、損傷與變形
鋼材外觀質量缺陷的檢測可分為均勻性,是否有夾層、裂紋、非金屬夾雜和明顯的偏析等項目。當對鋼材的外觀質量有懷疑時,應對鋼材原材料進行力學性能檢驗或化學成分分析。
鋼結構損傷的檢測可分為裂紋、局部變形、銹蝕等項目。
鋼結構構件變形檢測可分為撓度、傾斜以及基礎不均勻沉降等。
5、構造
鋼結構構造的檢測可分為:桿件長細比、構件截面的寬厚比、支撐體系的連接等項目。
6、涂裝
鋼結構涂裝的檢測主要包括防護涂料的質量、涂層厚度、鋼材表面的除銹等級等項目。
屋面光伏荷載報告——結構相關事項:
一、結構或構件的驗算應按現行標準執行。一般情況下,應進行結構或構件的強度、穩定、連接的驗算,必要時還應進行疲勞、裂縫、變形、傾復、滑移等的驗算。
對現行規范沒有明確規定驗算方法或驗算后難以判定等級的結構或構件,可結合實踐經驗和結構實際工作情況,采用理論和經驗相結合(包括必要時進行試驗)的方法,按照現行標準《建筑結構設計統一標準》進行綜合判斷;
二、結構或構件驗算的計算圖形應符合其實際受力與構造狀況;
三、結構上的作用及作用效應分項系數及組合系數應分別按本標準第3.0.2條和第3.0.3條確定,并應考慮由于變形、溫度等因素造成的附加內力;
四、當材料種類和性能符合原設計要求時,材料強度應按原設計值取用。
當材料的種類和性能與原設計不符或材料已變質時,材料強度應采用實測試驗數據。材料強度的標準值應按現行標準《建筑結構設計統一標準》有關規定確定。
取樣時不得損害結構的正常工作;
五、當混凝土結構表面溫度長期大于60℃,鋼結構表面溫度長期大于℃時,應考慮溫度對材質的影響;
六、驗算結構或構件的幾何參數應采用實測值,并應考慮構件截面的損傷、腐蝕、銹蝕、偏差、斷面削弱以及結構或構件過度變形的影響。

繼工業能耗、交通能耗之后,建筑物能耗也成為了我國能耗大戶之一。但在目前我國現有建筑物中只有4%采取了節能措施,我國建筑物單位面積的能耗是發達的3倍以上。如果對此不采取強效有力的政策措施,那么再過10年我國建筑能耗將會是現在的3倍以上。因此,建筑節能工作對我國而言是十分迫切而又艱巨的任務。1991年,光伏建筑一體化作為太陽能發電的一種新概念被正式提出,它是指將光伏系統與建筑相結合,利用太陽能發電來提供建筑自身用電或并網為電網供電。屋頂光伏發電工程對于優化能源戰略、改善電源結構、提高電源**、節能減排、提高環境質量是非常有利的,也是一項利國利民、前景廣闊的計劃,應該在政策上多多鼓勵該計劃的推廣與發展。隨著光伏屋頂計劃的深入、全面、廣泛地推廣,光伏屋頂將在我國形成一個新興的大產業。公司技術力量雄厚,擁有一批德才兼備的長期從事結構加固、房屋結構安全、質量檢測等的高、中級技術人才,以及完備的工程檢測設備;先后完成了辦公樓、住宅、廠房、學校、、幼兒園、學生接送站、旅館、賓館、星級酒店等過萬項工程的房屋安全、抗震、加固設計和加固施工工作。公司本著誠信的,誠實可靠的技術力量,為您提供滿意的服務。深圳市中測工程技術有限公司竭誠為您服務,承接全國業務范圍,提供免費技術服務,聯系電話:-, 李工
一、屋面光伏荷載報告——鋼結構屋面光伏存在哪些問題:
1、鋼結構屋面及節點漏水原因鋼結構屋面漏水是通病,漏水主要集中在垂直搭接、水平搭接、屋脊兩邊搭接、采光瓦四周、風機四周、煙囪管道四周、屋面所有螺釘、水槽、女兒墻接縫處等接縫部位。主要原因有以下一些方面。
2.1鋼結構屋面坡度一般較小,往往在6% 以下,在中南雨水較多地區這種結構的屋面漏水現象較為普遍,有大面積漏水、采光窗及屋脊結合部位點滴等。究其原因,形成漏水現象的原因不外自攻螺絲、彩鋼板搭接、屋脊瓦、抽心鉚釘、屋面上人引起彩鋼板變形及采光窗等裝飾部位防雨膠脫落等幾個方面原因。
2.2由于材料特性引發的漏水隱患:
(1)金屬板自身導熱系數大,當外界溫度發生較大變化時,由于環境溫差變化大,因溫度變化造成彩鋼板收縮變形而在接口處產生較大位移,因而在金屬板接口部位極易產生漏水隱患。
(2)鋼結構體系中,由于結構本身在溫度變化、受風載、雪載等外力的作用下,容易發生彈性變形,在連接部位產生位移而產生漏水隱患。
(3)部位,由于使用不同材料連接,比如女兒墻與鋼板連接處、屋面采光帶等部位,由于應力變化不同步,產生漏水隱患。
3 鋼結構屋面及節點防水措施
出現屋面漏水主要是影響了建筑物的正常使用,侵蝕建筑物結構主體,而且還進一步縮短了建筑物的原有使用壽命。然而治理屋面上的滲漏是項綜合的長期工作。
二、屋面光伏荷載報告——屋頂光伏發電系統在我國的發展現狀
其一,能量轉換率低。這是目前制約我國光伏發展的主要因素,也是要面對的首要問題。我國的光伏發電系統通常只有10%到15%的實際轉換率,過低的轉換率令光伏發電的成本居高不下,大大降低了技術實用性。直到2010年推出了轉換率達到26%的聚光光伏發電技術,這種狀況才有所好轉,但提高能量轉換率依然是光伏發電的首要技術目的。
其二,技術應用化程度不高。我國目前有相當一部分研究機構在進行光伏發電系統的研究,包括光伏企業、各個大學的實驗室等,但這些機構中有相當一部分重理論,輕實踐,獲得的技術成果局限于實驗室里,應用程度不高。還有部分研究人員的光伏技術研究與實踐缺乏聯系,偏離目前對光伏發電系統的實際需求,導致研究成果的社會能效不大。
其三,環境能效相對成熟。我國目前常用的屋頂光伏發電系統理論壽命普遍超過十年,其能量回收周期則大致在三年左右。所以僅從環境能效上來看,我國的光伏發電系統還是有相當水準的,能夠在環保節能方面發揮相當大的作用。
http://m.whqzyc.com