品牌中測
分類房屋檢測
數量100000000
種類可靠性鑒定
功能房屋檢測單位
鋼結構檢測鑒定的主要內容包括:對建筑材料、構件、連接與節點缺陷、結構系統、損傷狀況以及鋼結構安全性、適用性、耐久性及抗震性能鑒定等方面進屋鑒定,對有要求的鋼結構房屋結構安全檢測鑒定部門還應進行專項檢測,如:火災后鋼結構檢測鑒定,鋼結構疲勞度檢測鑒定,鋼結構動力檢測鑒定等。
建筑鋼結構檢測的技術
建筑鋼結構檢測的技術,主要包括力學性能、理化分析、無損探傷、結構性能等領域。其中鋼結構無損檢測目前應用廣,主要應用在以下幾方面:2.1焊接球節點鋼網架其整體結構由鋼管桿件與空心鋼球焊接組成的,球桿焊縫和空心球焊縫是二級質量焊縫,因此焊縫內部質量是保證網架安全主要因素,而焊縫質量檢測采用超聲檢測。2.2螺栓球節點鋼網架中的應用。螺栓球節點鋼網架由螺栓球、高強度螺栓和桿件三個分體構件組裝而成。螺栓球和高強度螺栓要進行表面質量檢測,一般采用水洗型著色滲透檢測;桿件焊縫要進行內部質量檢測,依據JGJ78采用超聲檢測。
2.3在焊接鋼結構工程中的應用。焊接H型門式鋼結構由鋼柱和鋼梁焊拼而成,是常見的一種焊接鋼結構。其中的全熔透焊縫內部質量要進行超聲檢測。抽樣數量和方法,一級焊縫檢測,二級焊縫按每條焊縫長度的20%且不小于200MM抽取。2.4在緊固件連接鋼結構工程中的應用。廠房的H型門式鋼架和高層建筑的鋼骨架,大部分是分體鋼柱和鋼梁用高強度螺栓連接組裝的,是典型的緊固件連接鋼結構工程。其中的鋼柱和鋼梁的全熔透焊縫內部質量要進行超聲檢測。
我國的光伏產業雖然在近些年呈現欣欣向榮的發展趨勢,但從總體技術水平來看仍處于初期的發展培育階段,相關技術遠遠稱不上成熟。目前來看,我國的光伏發電技術有如下幾個特征:其一,能量轉換率低。這是目前制約我國光伏發展的主要因素,也是要面對的要問題。我國的光伏發電系統通常只有10%到15%的實際轉換率,過低的轉換率令光伏發電的成本居高不下,大大降低了技術實用性。直到2010年推出了轉換率達到26%的聚光光伏發電技術,這種狀況才有所好轉,但提高能量轉換率依然是光伏發電的要技術目的。其二,技術應用化程度不高。我國目前有相當一部分研究機構在進行光伏發電系統的研究,包括光伏企業、各個大學的實驗室等,但這些機構中有相當一部分重理論,輕實踐,獲得的技術成果局限于實驗室里,應用程度不高。還有部分研究人員的光伏技術研究與實踐缺乏聯系,偏離目前對光伏發電系統的實際需求,導致研究成果的社會能效不大。其三,環境能效相對成熟。我國目前常用的屋頂光伏發電系統理論壽命普遍超過十年,其能量回收周期則大致在三年左右。所以僅從環境能效上來看,我國的光伏發電系統還是有相當水準的,能夠在環保節能方面發揮相當大的作用。深圳市中測工程技術有限公司竭誠為您服務,承接全國業務范圍,提供免費技術服務,聯系電話:-, 李工
一、屋面光伏荷載報告——屋面光伏荷載檢測過程:
1、檢測目的、范圍和內容
擬在屋面加設太陽能光伏板,為了解該廠房安全現狀與增加太陽能光伏板之后的廠房的安全狀況,對房屋主體結構檢測,判斷房屋的安全性能并提出合理的加固處理建議,為廠房后期使用提供可靠的安全**。
根據房屋質量檢測的相關規定,針對受檢房屋的特點和實際狀況,本次檢測的主要內容包括:
(1)廠房歷史及使用情況調查;
(2)現場結構圖紙測繪;
(3)廠房外觀質量缺陷及結構損傷檢測;
(4)鋼結構構件材料強度檢測;
(5)變形測量(房屋沉降、柱垂直度、梁撓度);
(6)主體結構承載能力驗算;
(7)綜合評估分析。
2、主要技術依據
(1) 《黑色金屬硬度及強度換算值》(GB/T1172-1999);
(2) 《建筑變形測量規程》(JGJ8-2016);
(3) 《建筑結構檢測技術標準》(GB/T50344-2004);
(4) 《鋼結構工程施工質量驗收規范》(G205-2001);
(5) 《建筑結構荷載規范》(G009-2012);
(6) 《鋼結構設計規范》(G017-2003);
(7) 《鋼結構檢測與技術規程》(DG/TJ08-2011-2007);
(8) 《金屬材料里氏硬度試驗方法》(GB/T17394.1-2014)。
二、屋面光伏荷載報告——承載力驗算
1、 計算參數
現準備在屋面加設光伏太陽能設備,根據的要求,綜合現場檢測的實際結構情況對該結構進行整體分析計算。
經檢測,現場屋面做法為:(1)深藍色彩鋼夾芯板;(2)保溫棉;(3)斜卷邊Z形檁條。
驗算荷載取值:恒載:0.3 kN/m2。
變更前活載:0.5 kN/m2(驗算檁條);0.3 kN/m2(驗算剛架)
變更后活載:0.83 kN/m2(驗算檁條);0.63 kN/m2(驗算剛架)
吊車荷載:5t(③~⑦軸每跨一臺,)
基本風壓:0.55kN/m2,地面粗糙度為B類
基本雪壓:0.20kN/m2
不考慮地震作用
材料強度:主體鋼結構按Q235;檁條、支撐按Q235。
2、門式剛架承載力驗算
本次采用建筑科學研究院結構計算程序PKPM(V3.1版)系列軟件STS模塊對典型剛架(1-7/E軸)按實測結構布置及構件截面尺寸進行建模,并對該廠房進行結構承載力驗算。計算模型見附圖4。
(1)原結構荷載驗算
驗算結果表明,廠房原結構荷載作用下,鋼柱作用彎矩與考慮屈曲后強度抗彎承載力比值、平面內穩定應力比均小于1,滿足承載力計算要求,GZ2、GZ6平面外穩定應力比大于1,不滿足承載力計算要求;鋼梁作用彎矩與考慮屈曲后強度抗彎承載力比值、平面內穩定應力比、平面外穩定應力比均小于1,滿足承載力計算要求。GZ2平面外穩定長細比不滿足規范要求,其余各構件長細比均滿足規范要求。驗算結果參見附圖5。
(2)屋面增加光伏板荷載驗算
廠房在屋面增加光伏板荷載作用下,鋼柱GZ3、GZ4作用彎矩與考慮屈曲后強度抗彎承載力比值、平面內穩定應力比、平面外穩定應力比小于1,滿足承載力計算要求;GZ1、GZ2、GZ7平面內穩定應力比大于1;GZ2、GZ7平面內長細比不滿足計算要求;GZ2、GZ5、GZ6平面外穩定應力比大于1,不滿足承載力計算要求;GZ2平面外長細比不滿足計算要求。鋼梁平面內穩定應力比、平面外穩定應力比、作用彎矩與考慮屈曲后強度抗彎承載力比均大于1,不滿足承載力計算要求。

屋面光伏荷載報告檢測依據的規范:
(1) 《民用建筑可靠性標準》(G292-1999)
(2) 《工業建筑可靠性標準》(G144-2008)
(3) 《建筑抗震標準》(G023-2009)
(4) 《房屋完損等級評定標準》(城住字[84]第678)
(5) 《危險房屋標準》(JGJ125-99,2004年版)
(6) 《城市危險房屋管理規定》(令[2004]第129)
(8) 《建筑結構可靠度設計統一標準》(G068-2001)
(9) 《混凝土結構設計規范》(G010-2002)
(10)《砌體結構設計規范》(G003-2001)
(11)《建筑地基基礎設計規范》(G007-2002)
(12)《建筑抗震設計規范》(G011-2010)
(13)《建筑地震破壞等級劃分標準》(1990)建抗字第377
(14)《建筑工程抗震設防分類標準》(G223-2008)
(15)《建筑結構荷載規范》(G009-2001,2006年版)
(16)《建筑變形測量規程》(JGJ/T8-2007)
(17)《建筑結構檢測技術標準》(GB/750344-2004)
(18)《鉆芯法檢測混凝土強度技術規程》(CE03:2007)
(19)《回彈儀評定燒結普通磚強度等級的方法》(JC/T796-1999)
屋面光伏荷載報告—有關知識:
屋頂面積直接決定光伏發電項目的容量,是基礎的元素,屋面上是否存在附屬物,如風樓、風機、附房、女兒墻等,設計時需要避開陰影影響。屋面朝向決定著光伏支架、組件、串列、匯流箱的布置原則,比如東西走向的屋面,背陰面的方陣是否需要設置傾角,組件串聯時陰陽兩面盡量避免互連,匯流箱及逆變器直流輸入輸入盡量為同一屋面朝向的陣列。屋面材質基本分為彩鋼瓦、陶瓷瓦、鋼混等,其中彩鋼瓦分為直立鎖邊型、咬口型(角馳式,呈菱形)型、卡扣型(暗扣式)型、固定件連接(明釘式,梯形凸起)型。前兩種需要轉接件,后兩種需要打孔固定;陶瓷瓦屋面既可以使用轉接件,也可以不與屋面固定,利用自重和屋面坡度附著其上;鋼混結構屋面一般需要制作支架基礎,基礎與屋面可以生根也可以不生根,關鍵考慮屋面防水、抗風載能力、屋面設計荷載等因素。屋面的設計使用壽命決定光伏電站的使用壽命。屋面荷載屋面荷載大體分為荷載和可變荷載。荷載也稱恒荷載,指的是結構自重及灰塵荷載等,光伏電站安裝在屋面后,需要運營25年,其自重歸屬于恒荷載,因此,在項目前期考察時,需要著重查看建筑設計說明中恒荷載的設計值,并落實除屋面自重外,是否額外增加其他荷載,如管道、吊置設備、屋面附屬物等,并落實恒荷載是否有余量能夠安裝光伏電站。可變荷載是考慮極限狀況下暫時施加于屋面的荷載,分為風荷載、雪荷載、地震荷載、活荷載等,是不可以占用的。情況下,活荷載可以作為分擔光伏電站荷載的選項,但不可以占用過多,需要具體分析。

光伏發電技術在建筑中的主要應用為在既有建筑平屋頂上安裝光伏電池板及相關配套設施組成的發電系統,屋面板往往不能承受由安裝光伏電池板引起的新增屋面荷載,需對屋面板、甚至屋面梁進行加固處理。本實用新型提供了一種用于支承光伏電池板的非屋面承重結構,包括混凝土基座,其特征在于所述的混凝土基座上架設光伏電池板承重架組件,該光伏電池板承重架組件包括多條承重鋼梁、多條槽型鋼軌和多個光伏電池板支架,所述承重鋼梁的底部固定在混凝土基座上,槽型鋼軌的端部焊接在承重鋼梁上,光伏電池板支架安裝在槽型鋼軌上。本實用新型使新增屋面荷載全部由原框架柱頂承受,避免了由于屋面板超載而進行屋面板、屋面梁的加固處理。鋼結構是主要由鋼制材料組成的結構,是主要的建筑結構類型之一。鋼結構主要是由型鋼和鋼板等材料制成的鋼梁、鋼柱等構件組成,各構件間通過焊接、螺栓、柳釘連接。鋼結構施工簡單、自重輕、整體剛性好、變形能力強,能夠很好的承受動力荷載,具有良好的抗震性能。鋼結構不僅可靠性較高,彈性模量也高,且可利用機械化設備進行大規模量產。公司擁有高水平的技術人才、設計團隊,及經驗豐富的管理機構與施工隊伍可確保每一個項目的完成都能達到客戶滿意。從房屋加固的方案設計到施工,每一步都為客戶量身定做,采用以項目計費的計費方式,建造出讓客戶滿意的位,高質量的房屋加固。以鋼結構廠房為例:
1、鋼結構材質檢查是很重要的,
構成鋼結構的桿件、節點板、鉚釘、螺栓、焊接材料等,一般從外觀上很難分辨清楚,由于材質不同,其機械性能(強度、屈服強度、延伸率、冷彎性能、沖擊韌性等)和化學成份(C、Si、Mn、P、S……)不同。對結構可靠性(安全性、耐久性)、以及施工中的可焊性、低溫工作條件下的冷脆性等。其影響都是很大的,所以要求在結構驗算時其材料的強度取值,當結構材料種類和性能符合原設計要求時,且原始資料充分可靠,應按原設計取值。不相符時,或材料已變質時,應采用實測試驗數據,此時材料強度的標準值應按《建筑結構設計統一標準》(G68—84)第4.0.4條規定確定。
鋼結構設計規定,當構件表面溫度超過℃時,就要采取隔熱措施,當構件溫度大于或等于200℃時,就要按構件所處工作溫度條件用試驗方法確定材料的物理力學指標。
2、變形
結構構件在設計荷載作用下的變形值的限制,主要是從為了滿足使用功能的要求,包括:
(1)用戶的安全感和美觀;
(2)不損壞非結構構件;
(3)不超過結構能承受的變形;
(4)不使用途失效;
(5)不得有過度的振動和搖晃。
鋼結構構件變形按表11.3評定等級標準。
3、評定等級分為A、B、C、D,按承載能力(包括構造和連接)、變形、偏差三個子項評定等級,并以承載能力(包括構造和連接)為主確定該項目的評定等級:
(1)當變形、偏差比承載能力(包括構造和連接)相差不大于一級時,以承載能力
(包括構造和連接)的等級作為該項目的評定等級;
(2)當變形,偏差比承載能力(包括構造和連接)低二級時,按承載能力(包括構
造和連接)的等級降低一級作為該項目的評定等級;
(3)遇到其他情況時,可根據上述原則綜合判斷、評定等級。
光伏電站的建設需要占據較大的土地面積,針對這一特點,需要選擇土地遼闊、人口稀少以及太陽能資源豐富的地區,從我國目前已經開始建設的光伏電站來看,主要分布在我國西部地區。光伏電站的應用特點如下:
(1)由于西部地區煤礦資源豐富而且城市耗電量相對較低,光伏電站生產的電能無法就近使用,需要通過變電站升壓并通過高壓電纜進行遠距離傳輸,其中存在較大的運輸損耗;
(2)地價、額外的土地建設費用以及電站管理費用成為了光伏電站建設的附加成本,其可以達到光伏電站總建設成本的10%~20%左右;
(3)由于太陽能資源缺乏連續性,光伏電站直接并網之后,不但無法成為大型電網的備用電源,同時其發電的隨機性還會加大電網對電力調配的難度。
而從我國的情況來看,在沙漠地區,光伏電站具有較好的應用價值,沙漠地區的土地利用家就只較低,而且面積廣闊,其太陽能資源相對較為豐富,加上我國沙漠面積較大,未來在沙漠地區建設光伏電站將成為主要的趨勢之一。

屋面光伏荷載報告實例:
xxxxxx 公司湖北分公司擬與xxxxxx 公司合作,在該新建24 棟廠房屋頂布設屋頂分布式光伏組件,建成屋頂光伏發電站。因光伏組件的布設將增加建筑相應屋面區域的荷載,故在光伏組件布設施工前需對上述廠房擬布光伏組件區域內的屋蓋結構進行檢測,并評估其安全性,為該項目后續的決策及處理提供技術依據。
一、該項目屋面光伏組件設計鋪設方式有兩種:
1、在鋼筋混凝土屋面布設鋼支架,并用混凝土壓塊壓住鋼支架以保證其的穩定,再將光伏組件鋪設于鋼支架上,相應屋面荷載增加約0.6kN/㎡(標準值);
2、直接將光伏組件平鋪固定于現有屋面構件表面,不再架設鋼支架和混凝土壓塊,相應屋面荷載增加約0.13kN/㎡(標準值)。實際在屋頂鋪設光伏組件時是按照組件單元鋪設,且單元間留有檢修通道,故此次所取荷載偏于安全。
二、檢測目的
本次結構檢測的目的是以科學的方法和手段,對房屋屋蓋結構進行檢測,測
量屋頂構件軸線位置、截面尺寸、鋼板厚度,與原設計圖紙進行對比復核,并通
過計算評估其承載力,明確廠房的結構現狀,為后期增加荷載提供技術參數。
三、檢測依據及標準
及行業相關技術規范:
1 《建筑結構檢測技術標準》(GB/T50344-2004) ;
2 《鋼結構工程施工質量驗收規范》(G205-2001);
3 《鋼結構設計規范》(G017-2003);
4 《門式剛架輕型房屋鋼結構技術規程》(CE 102-2002);
5 《建筑結構荷載規范》(G009-2012);
6 《建筑抗震設計規范》(G011-2010);
7 《回彈法檢測混凝土抗壓強度技術規程》(JGJ/T 23-2011);
8 《黑色金屬硬度及強度換算值》(GBT 1172-1999);
8 圖紙等相關技術資料
四、檢測項目和內容
根據檢測的目的和要求,現場檢測內容如下:
1 現場相關情況調查;
2 建筑、結構布置調查;
3 主要結構構件尺寸測量;
4 材料強度檢測
5 結構外觀缺陷普查;
6 結構承載力計算分析;
7 結構整體分析、評價。
屋面光伏荷載報告——鋼結構承載力:
鋼結構構件的可靠性評級包括承載能力(含構造和連接)、變形、偏差三個子項。這里承載能力是主要子項,根據其受作用的特征可以是強度、穩定性、疲勞,也可以是連接。一般是根據結構上的作用效應和抗力(材質參數、幾何參數和結構理論模式)的關系進行驗算分析從而評定其等級的。也可以直接進行荷載試驗檢驗。對已建結構的試驗檢驗,一般不能進行到破壞,所以看不出安全儲備量。另外在試驗方案、荷載作用模擬、結構的反應控制均應仔細擬定計劃,并作好可能發生意外情況的防護和對策。
1、鋼結構和構件的項目
在承載能力評定中鋼結構材質檢查是很重要的,構成鋼結構的桿件、節點板、鉚釘、螺栓、焊接材料等,一般從外觀上很難分辨清楚,由于材質不同,其機械性能(強度、屈服強度、延伸率、冷彎性能、沖擊韌性等)和化學成份(C、Si、Mn、P、S……)不同。對結構可靠性(安全性、耐久性)、以及施工中的可焊性、低溫工作條件下的冷脆性等。其影響都是很大的,所以要求在結構驗算時其材料的強度取值,當結構材料種類和性能符合原設計要求時,且原始資料充分可靠,應按原設計取值。不相符時,或材料已變質時,應采用實測試驗數據,此時材料強度的標準值應按《建筑結構設計統一標準》(G68—84)第4.0.4條規定確定。
鋼結構設計規定,當構件表面溫度超過℃時,就要采取隔熱措施,當構件溫度大于或等于200℃時,就要按構件所處工作溫度條件用試驗方法確定材料的物理力學指標。
2、變形
結構構件在設計荷載作用下的變形值的限制,主要是從為了滿足使用功能的要求,包括:
(1)用戶的安全感和美觀;
(2)不損壞非結構構件;
(3)不超過結構能承受的變形;
(4)不使用途失效;
(5)不得有過度的振動和搖晃。
鋼結構構件變形按表11.3評定等級標準。
3、評定等級分為A、B、C、D,按承載能力(包括構造和連接)、變形、偏差三個子項評定等級,并以承載能力(包括構造和連接)為主確定該項目的評定等級:
(1)當變形、偏差比承載能力(包括構造和連接)相差不大于一級時,以承載能力(包括構造和連接)的等級作為該項目的評定等級;
(2)當變形,偏差比承載能力(包括構造和連接)低二級時,按承載能力(包括構造和連接)的等級降低一級作為該項目的評定等級;
(3)遇到其他情況時,可根據上述原則綜合判斷、評定等級。
http://m.whqzyc.com