品牌中測
分類房屋檢測
數量100000000
種類可靠性鑒定
功能房屋檢測單位
在建筑工程中對于各項安全指標的檢測是非常必要的,過程同樣是重中之重。在進行鋼結構檢測的過程中,既包括對鋼材質量的檢測,又需要對緊固件的連接之間進行檢測,而取樣也特別重要,那么高質量的鋼結構檢測取樣方法有哪些?
一、鋼材質量檢測取樣方法
1、鋼結構化學成分分析的取樣方法:
在鋼結構檢測過程中,對其化學成分進行分析取樣應確保能夠代表產品的化學成分的平均值,去除所取樣本的表面涂層以及其它方面的污染,盡可能避免有裂紋、疏松等缺陷的地方,并且質量盡可能大一些,如果是粉末狀的樣品,可以用鉆、切或者車、沖的方法取樣,也可以用破碎機將小塊的材料破碎來進行取樣。
2、力學性能檢測取樣方法:
鋼結構檢測中的力學性能檢測,在取樣過程中要避免過熱以及加工硬化而造成影響力學性能的現象,取樣的位置與方向應該按照規定來確定,確保構件的安全,拉伸、冷彎實驗都需要抽取一個試樣,而沖擊試驗需要抽取三個,屈服點與抗拉強度不夠是,還應該采取補充拉伸試驗。
二、緊固件以及網架節點連接質量檢測取樣方法
1、鋼網架用的高強度螺栓檢測取樣方法
同一性能的鋼結構檢測過程中,對于其等級、材料以及爐號、規格和機械加工都應進行取樣檢測,并且還應對熱處理以及表面上的處理工藝的螺栓作為同一個批次進行取樣,每批次以及規格應抽取相同的數量。
2、高強度螺栓的連接摩擦面的取樣方法
鋼結構檢測過程中,高強度螺栓之間的連接以及摩擦面在取樣時,需要根據螺栓的長度與某個能夠代表工程的部位來確定,而且試件的表面應該保持平整,沒有油污,孔與板的邊緣沒有飛邊、毛刺,而且所取的芯板的厚度應該能夠保證處于一種彈性的變形狀況,確保取樣檢測的準確性。
在進行鋼結構檢測過程中的取樣應遵循以上幾種方法,在實際的操作中盡可能選取一些完整的能夠反映結構實際狀況的樣品,包括其化學成分檢測、力學性能的檢測,甚至鋼網架用的高強度螺栓以及其連接面的檢測取樣等,正確的取樣方法可以確保品質好的鋼結構檢測。
隨著分布式光伏電站建設如火如荼飛速發展,我們應該更清醒的意識到:設計和建設電站,不僅是跑部門備案開發項目,也不只是將買來的設備連接安裝起來,有一個不能忽略的重要考慮是:在每一個電站實際運行的二十多年生命周期中,應該如何確保財產及人身的安全!我們不希望居民或者工業的屋頂光伏電站,因為“潛在的火災隱患”危及到相關財產以及人身的安全!近期,關于“山西戶用光伏電站逆變器著火了”的報道在各大媒體被報道,事故的原因撲朔迷離:剛出來的報道解釋為“劣質逆變器引起的直流拉弧”,隨后后續報道提到是因為“雷電”導致了這次事故。這件事也讓我們聯想到2016年年初在南京的工業屋頂光伏電站起火一事。逐漸披露的屋頂光伏電站火災的報道,給所有的行業人士,尤其是從事分布式、戶用光伏電站建設、運維等相關人士敲響了警鐘!深圳市住建工程檢測有限公司
竭誠為您服務,承接全國業務范圍,提供免費技術服務,聯系電話:-, 李工
分布式光伏發電系統施工過程中,可能會有屋面雨水滲漏的風險,應引起重視。
從項目現場勘察階段到深化設計階段,必須對屋面未來可能產生的滲漏風險做出充分預估和論證,對任何可能發生雨水滲漏的點要進行詳細排查,盡量采用簡單有效的技術手段,進行防水技術處理;在工程施工階段,要避免給屋面防水造成二次風險。
隨著光伏發電成本逐漸下降,分布式光伏發電的投資回報率較地面集中式電站具有相對優勢,更易被平常百姓家所接受。
閑置的廠房、商業建筑、農村屋頂逐漸被光伏電站投資者所青睞。經濟發展較快的地區,農村居民家家戶戶都用上了太陽能熱水器,典型的如江蘇、浙江地區,沿著疾馳而過的高鐵向遠處眺望,看到并排的光伏屋頂,儼然藍色海洋。
說起屋頂光伏電站,能安裝分布式光伏發電系統的屋頂無非是平房、瓦房、彩鋼瓦房屋頂。在農村這3種不同的屋頂安裝分布式光伏系統需要注意什么問題呢,今日小編與您一起來探討。
共同點:
可使用的面積、屋頂朝向、房屋結構、地面基礎情況和氣象條件、承重能力、屋面防水、老化程度、建筑物遮擋等(此處產權歸屬不做考慮)。
不同點:
平房屋頂。平房屋安裝分布式光伏電站主要是考慮屋頂的承重能力、防水性能,其他方面相對前兩者考慮的因素要簡單很多。
瓦房屋頂。瓦房屋頂安裝光伏電站,需要考慮屋頂的朝向、方位角、屋頂傾斜角、瓦片的類型及尺寸、防水等,此外,還要考慮屋頂的遮掩面積及掀開部分瓦片的屋頂結構等。
彩鋼屋頂。彩鋼屋頂安裝光伏電站,需要考慮彩鋼使用壽命(彩鋼使用壽命是15年,光伏系統的使用是25年),一旦更換,需要考慮成本問題。此外,需考慮彩鋼屋頂結構(角馳型、直立鎖邊型、梯型結構)、彩鋼屋頂夾具形式、防水工作等。
在當前的財政補貼政策下,電網接入是用戶側光伏項目發展的關鍵,目前,僅在工業園區、學校、商場等商用電較多、屋頂面積較大區域,申請用戶側光伏電站補貼是可行的。
用戶側光伏發電項目的進一步推廣與應用,將從目前的示范工程逐步推廣,后發展至鼓勵屋頂安裝且自發自用的小型光伏系統。為此,提出建議如下:
1.進一步完善可再生能源法,將電網公司對用戶側光伏電站的接入細則法律化。
2.推行強制電價上網法。在當前階段,可對居民屋頂太陽能發電項目給予投資補貼的同時,建立強制電價上網法,核算與安裝規模關聯的居民屋頂光伏電站上網電價,鼓勵居民屋頂光伏項目的發展。
3.簡化用戶側并網項目申報程序,減少項目申報手續,實行屋頂光伏項目并網備案制。比如取消項目申報中環評、水保、地災、土地、可行性評審等手續,簡化電網接入程序審查等。
結合光伏電站的實際情況,二次系統應該選擇無人值守、遠程和集中的方式,節省運維需要的人力資源。但是集中控制對二次系統運行的穩定性和可靠性提出了更高的要求,遠程要具有所有現場具備的功能,而且設計方案應該在技術經濟條件可行的情況下滿足光伏電站自動化與冗余需求。

分布式光伏電站建設:
居民分布式光伏發電系統由太陽電池板(組件)、 控制器和逆變器部分組成。由于這三個部分主要由電子元器件構成,不涉及機械部件,設備精煉、可靠穩定,而且壽命長、安裝維護簡便。
1、光伏組件部分:
光伏組件是由光能轉變為太陽能的主要設備其太陽能電池發電的原理是光生伏應。 當太陽光(或其他光)照射到太陽能電池上時,電池吸收光能,產生光生電子―空穴對。在電池內建電場作用下,光生電子和空穴被分離,電池兩端出現電荷的積累,即產生“光生電壓”,就是“光生伏打效應”。若在內建電場的兩側引出電并接上負載,則負載就有“光生電流”流過,從而獲得功率輸出。這樣,太陽的光能就直接變成了可以應用的電能。
2、逆變器部分:
逆變器是光伏并網發電系統的重要設備之一,其主要功能是把來自太陽能電池方陣輸出的直流電轉換成與電網電力相同電壓和頻率的交流電,并把電力輸送給電網或與交流系統連接的負載,同時還具有大限度地發揮太陽能電池方陣性能的功能和異常或故障時的保護功能。
3、支架等配套附件:
固定光伏組件的支架、交直流匯流箱、交直流電纜等相關配套設備。
某居民利用自有屋頂建設了一個3kW的分布式光伏電站,其設備清單及價格如下:
建設一個3kW的光伏電站約為3萬元左右。分布式電站就采用無人監護系統,因此無須其他發電項目涉及到運營成本。
二、屋面光伏荷載報告——鋼結構屋面及節點漏水原因鋼結構屋面漏水是通病,漏水主要集中在垂直搭接、水平搭接、屋脊兩邊搭接、采光瓦四周、風機四周、煙囪管道四周、屋面所有螺釘、水槽、女兒墻接縫處等接縫部位。主要原因有以下一些方面。
1、鋼結構屋面坡度一般較小,往往在6%以下,在中南雨水較多地區這種結構的屋面漏水現象較為普遍,有大面積漏水、采光窗及屋脊結合部位點滴等。究其原因,形成漏水現象的原因不外自攻螺絲、彩鋼板搭接、屋脊瓦、抽心鉚釘、屋面上人引起彩鋼板變形及采光窗等裝飾部位防雨膠脫落等幾個方面原因。
2、由于材料特性引發的漏水隱患:
(1)金屬板自身導熱系數大,當外界溫度發生較大變化時,由于環境溫差變化大,因溫度變化造成彩鋼板收縮變形而在接口處產生較大位移,因而在金屬板接口部位易產生漏水隱患。
(2)鋼結構體系中,由于結構本身在溫度變化、受風載、雪載等外力的作用下,容易發生彈性變形,在連接部位產生位移而產生漏水隱患。
(3)部位,由于使用不同材料連接,比如女兒墻與鋼板連接處、屋面采光帶等部位,由于應力變化不同步,產生漏水隱患。
3、鋼結構屋面及節點防水措施
出現屋面漏水主要是影響了建筑物的正常使用,侵蝕建筑物結構主體,而且還進一步縮短了建筑物的原有使用壽命。然而治理屋面上的滲漏是項綜合的長期工作。
三、屋面光伏荷載報告——屋面混凝土結構樓板存在問題
1、用于屋面板施工的砼的配合比與試驗室試配要求可能不一致,施工前施工單位可能沒有進行現場坍落度檢查,造成澆筑后混凝土早期和后期強度不足,砼自身松散、不密實,從而不能達到結構自防水的設計要求;
2、在屋面板結構砼施工中可能沒有按要求進行澆筑和振搗,或者施工工藝順序倒置、不合理,這同樣會造成砼自身的松散和不密實;
3、砼澆筑完成后,后期養護不到位或沒有養護或養護時間不夠;
4、可能是砼初期強度未達到設計規定要求,砼表面提前堆放重物或上人,或結構板下部模板支撐不實,或被提前拆除,這些都會使結構砼早期受到擾動,受擾動的結構樓板出現裂縫而終導致滲漏現象發生。
屋面防水找平層施工質量存在問題
1、什么是防水找平層?就是在涂刷或粘貼防水材料前,先要在屋面的結構板面上用水泥砂漿涂抹一個平面,以此做為防水層施工的基層,其厚度在20-30mm之間。找平層的厚度、平整度可能沒有達到標準規定要求,存在麻面、透底和開裂現象,在一定程度上會影響后期防水層的施工效果和質量。
2、涂膜防水或者卷材防水材料本身存在質量缺陷,或者是材料商以次充好。材料進場后,施工單位沒有認真的履行質量自檢關,監理單位也可能沒有按要求進行檢查及抽查復試,造成進場使用的防水材料不合格;
3、細部處理不到位、不合格,像屋面的陰角、陽角、出屋面的管道根部、檐溝等部位。這些部位施工中可能遺漏附加層,或者是防水層施工存在質量缺陷;
4、防水涂膜施工厚度不足、涂刷不均,存在露底問題,卷材防水粘貼層數不符合要求,長短邊搭接長度不足100mm,或者搭接邊口密封不嚴;
5、后期防水保護層施工或其他后續施工過程中,將以前做好的防水層成品破壞,被破壞的部位沒人發現或者無人進行修補。

屋面光伏荷載報告檢測依據的規范:
(1) 《民用建筑可靠性標準》(G292-1999)
(2) 《工業建筑可靠性標準》(G144-2008)
(3) 《建筑抗震標準》(G023-2009)
(4) 《房屋完損等級評定標準》(城住字[84]第678)
(5) 《危險房屋標準》(JGJ125-99,2004年版)
(6) 《城市危險房屋管理規定》(令[2004]第129)
(8) 《建筑結構可靠度設計統一標準》(G068-2001)
(9) 《混凝土結構設計規范》(G010-2002)
(10)《砌體結構設計規范》(G003-2001)
(11)《建筑地基基礎設計規范》(G007-2002)
(12)《建筑抗震設計規范》(G011-2010)
(13)《建筑地震破壞等級劃分標準》(1990)建抗字第377
(14)《建筑工程抗震設防分類標準》(G223-2008)
(15)《建筑結構荷載規范》(G009-2001,2006年版)
(16)《建筑變形測量規程》(JGJ/T8-2007)
(17)《建筑結構檢測技術標準》(GB/750344-2004)
(18)《鉆芯法檢測混凝土強度技術規程》(CE03:2007)
(19)《回彈儀評定燒結普通磚強度等級的方法》(JC/T796-1999)
屋面光伏荷載報告—有關知識:
屋頂面積直接決定光伏發電項目的容量,是基礎的元素,屋面上是否存在附屬物,如風樓、風機、附房、女兒墻等,設計時需要避開陰影影響。屋面朝向決定著光伏支架、組件、串列、匯流箱的布置原則,比如東西走向的屋面,背陰面的方陣是否需要設置傾角,組件串聯時陰陽兩面盡量避免互連,匯流箱及逆變器直流輸入輸入盡量為同一屋面朝向的陣列。屋面材質基本分為彩鋼瓦、陶瓷瓦、鋼混等,其中彩鋼瓦分為直立鎖邊型、咬口型(角馳式,呈菱形)型、卡扣型(暗扣式)型、固定件連接(明釘式,梯形凸起)型。前兩種需要轉接件,后兩種需要打孔固定;陶瓷瓦屋面既可以使用轉接件,也可以不與屋面固定,利用自重和屋面坡度附著其上;鋼混結構屋面一般需要制作支架基礎,基礎與屋面可以生根也可以不生根,關鍵考慮屋面防水、抗風載能力、屋面設計荷載等因素。屋面的設計使用壽命決定光伏電站的使用壽命。屋面荷載屋面荷載大體分為荷載和可變荷載。荷載也稱恒荷載,指的是結構自重及灰塵荷載等,光伏電站安裝在屋面后,需要運營25年,其自重歸屬于恒荷載,因此,在項目前期考察時,需要著重查看建筑設計說明中恒荷載的設計值,并落實除屋面自重外,是否額外增加其他荷載,如管道、吊置設備、屋面附屬物等,并落實恒荷載是否有余量能夠安裝光伏電站。可變荷載是考慮極限狀況下暫時施加于屋面的荷載,分為風荷載、雪荷載、地震荷載、活荷載等,是不可以占用的。情況下,活荷載可以作為分擔光伏電站荷載的選項,但不可以占用過多,需要具體分析。

分布式光伏電站的建設特點。
大家都清楚,所有的分布式光伏電站大家分析了很多,它的特點,就近發電,就近并網,就近使用的原則,對于分布式的定義,對于裝機容量有一個定義,現在20兆瓦以下。相對集中,整個的投資規模,因為并網比較便利,可以就近選擇設施。我大致總結了一下,我們從分布式電站的建設特點來講,根據這個建設特點,我們為什么會主推EPC模式,設計、采購和施工,目前在分布式電站的建設過程中遇到了很多問題,從資金上,從質量上不可避免產生一些問題,我從特點來講一下。我覺得EPC不管是從風險、投資和成本上都有特點。為什么分布式開發的困難比較大,因為供電的數量分散比較多,廣東雖然工業比較發達,全國來看,上到一定體量的屋頂并不是很多的,如果成片開發來說,很多的設計要考慮怎么樣根據現場整個屋面的數量來定制系統,從設計特點來看,現在開發的電站下面進行生產,怎么樣不應該生產,設計施工方案更加合理。在已建屋面安裝電池組件,需要對屋面是否能夠增加荷載進行復核。接入條件各有不同,需要考慮電網情況,得出可靠的接入方案,廣東沿海地區需要考慮臺風的影響。分布式光伏電站的建設特點,設計,并網點較多,需要根據原有的配電系統選擇并網點和并網電壓等級,新建或改造配電室。根據負載用點情況,測算收益,以美的的6兆瓦的案例,本項目屋頂分散,接入點比較遠,屋頂有較多設備和采光帶,因此在設計過程中,先對屋頂實際情況進行模擬分析,得出合理的組件布置,再確定逆變器和箱變的位置,盡可能減少電纜的長度,降低傳輸損耗,開關站根據現場實際情況采用戶外集裝箱式,不占用生產廠房。
二、屋面光伏荷載報告實例——某廠房廠房位于三明市尤溪縣,建于2015年,車間平面尺寸為3003+2730米,檐口高度為8.5米,總屋頂面積為5733m2,主車間結構形式為門式剛架結構。甲方擬在車間屋面上鋪設太陽能電池板及附件設備,根據甲方提供的資料,鋪設太陽能電池板及附件設備的總重量不超過15kg/㎡(0.15kN/㎡)。根據甲方提供的技術資料和廠房圖紙,對屋面增加太陽能設備進行安全評估,根據安全評估結果提出對車間結構的處理意見及建議,以確保建筑物的安全和合理使用。
1、車間結構基本情況查勘:
該廠房,建于2015年,結構形式為門式鋼架結構,結構傳力路徑為:荷載→檁條→鋼屋架→鋼柱→基礎。鋼構件布置及尺寸與原設計圖紙相符。抗風柱的布置,屋面支撐及檁條、拉條、柱間支撐的布置,墻柱、墻梁的設置滿足有關設計規范的要求。車間梁柱平整度較好,未發現梁的平面內垂直變形和平面外的側向變形,未發現柱子的傾斜和撓曲。主體結構構件表面無明顯缺陷;鏈接及節點無明顯缺陷;鋼構件表面均有防銹涂層和防火涂層,無明顯銹蝕痕跡。
2、結構使用條件調查核實:
該廠房,其生產設備均直接支撐于地面上,沒有支撐于車間主結構上,未增加屋面的局部吊掛荷載。
3、地基基層調查:
現場勘察車間結構的柱底和底層墻體,未發現因基礎不均勻沉降而導致的上部結構倒斜、近地面墻體斜裂縫等,地基基層可評定為無明顯靜載缺陷,地基基本趨于穩定。
4、承重結構檢查:
檢查車間的主體結構未發現梁的平面內垂直變形和平面外的側向變形;未發現柱子的側斜和撓曲;未發現屋面檁條有過大撓曲變形;主體結構構件表面無明顯缺陷;連接及節點無明顯缺陷。
5、工程資料收集:
甲方提供了車間的建筑、結構施工圖(竣工圖),產品介紹資料及已經運行設備的實地考察。
http://m.whqzyc.com